Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 73(4): 565-571, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232306

RESUMO

Autoantibodies to glutamate decarboxylase (GADA) are widely used in the prediction and classification of type 1 diabetes. GADA radiobinding assays (RBAs) using N-terminally truncated antigens offer improved specificity, but radioisotopes limit the high-throughput potential for population screening. Luciferase-based immunoprecipitation system (LIPS) assays are sensitive and specific alternatives to RBAs with the potential to improve risk stratification. The performance of assays using the Nanoluc luciferase (Nluc)-conjugated GAD65 constructs, Nluc-GAD65(96-585) and full length Nluc-GAD65(1-585), were evaluated in 434 well-characterized serum samples from patients with recent-onset type 1 diabetes and first-degree relatives. Nonradioactive, high-throughput LIPS assays are quicker and require less serum than RBAs. Of 171 relatives previously tested single autoantibody positive for autoantibodies to full-length GAD65 by RBA but had not progressed to diabetes, fewer retested positive by LIPS using either truncated (n = 72) or full-length (n = 111) antigen. The Nluc-GAD65(96-585) truncation demonstrated the highest specificity in LIPS assays overall, but in contrast to RBA, N-terminus truncations did not result in a significant increase in disease-specificity compared with the full-length antigen. This suggests that binding of nonspecific antibodies is affected by the conformational changes resulting from addition of the Nluc antigen. Nluc-GAD65(96-585) LIPS assays offer low-blood-volume, high-specificity GADA tests for screening and diagnostics.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Glutamato Descarboxilase , Sensibilidade e Especificidade , Autoanticorpos , Luciferases/genética , Imunoprecipitação
2.
J Cell Biol ; 222(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014324

RESUMO

The LIM homeodomain transcription factors LMX1A and LMX1B are essential mediators of midbrain dopaminergic neuronal (mDAN) differentiation and survival. Here we show that LMX1A and LMX1B are autophagy transcription factors that provide cellular stress protection. Their suppression dampens the autophagy response, lowers mitochondrial respiration, and elevates mitochondrial ROS, and their inducible overexpression protects against rotenone toxicity in human iPSC-derived mDANs in vitro. Significantly, we show that LMX1A and LMX1B stability is in part regulated by autophagy, and that these transcription factors bind to multiple ATG8 proteins. Binding is dependent on subcellular localization and nutrient status, with LMX1B interacting with LC3B in the nucleus under basal conditions and associating with both cytosolic and nuclear LC3B during nutrient starvation. Crucially, ATG8 binding stimulates LMX1B-mediated transcription for efficient autophagy and cell stress protection, thereby establishing a novel LMX1B-autophagy regulatory axis that contributes to mDAN maintenance and survival in the adult brain.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Proteínas com Homeodomínio LIM , Mesencéfalo , Neurônios , Fatores de Transcrição , Humanos , Autofagia , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Mesencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Neurônios/citologia
3.
J Mol Cell Biol ; 15(3)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36990513

RESUMO

The SARS-CoV-2 spike protein contains a functionally important fatty acid (FA) binding site, which is also found in some other coronaviruses, e.g. SARS-CoV and MERS-CoV. The occupancy of the FA site by linoleic acid (LA) reduces infectivity by 'locking' the spike in a less infectious conformation. Here, we use dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations to compare the allosteric responses of spike variants to LA removal. D-NEMD simulations show that the FA site is coupled to other functional regions of the protein, e.g. the receptor-binding motif (RBM), N-terminal domain (NTD), furin cleavage site, and regions surrounding the fusion peptide. D-NEMD simulations also identify the allosteric networks connecting the FA site to these functional regions. The comparison between the wild-type spike and four variants (Alpha, Delta, Delta plus, and Omicron BA.1) shows that the variants differ significantly in their responses to LA removal. The allosteric connections to the FA site on Alpha are generally similar to those on the wild-type protein, with the exception of the RBM and the S71-R78 region, which show a weaker link to the FA site. In contrast, Omicron is the most different variant, exhibiting significant differences in the RBM, NTD, V622-L629, and furin cleavage site. These differences in the allosteric modulation may be of functional relevance, potentially affecting transmissibility and virulence. Experimental comparison of the effects of LA on SARS-CoV-2 variants, including emerging variants, is warranted.


Assuntos
COVID-19 , Humanos , Furina/genética , Ácido Linoleico , SARS-CoV-2/genética
4.
RSC Med Chem ; 13(8): 929-943, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36092142

RESUMO

Targeting the colchicine binding site of α/ß tubulin microtubules can lead to suppression of microtubule dynamics, cell cycle arrest and apoptosis. Therefore, the development of microtubule (MT) inhibitors is considered a promising route to anticancer agents. Our approach to identify novel scaffolds as MT inhibitors depends on a 3D-structure-based pharmacophore approach and docking using three programs MOE, Autodock and BUDE (Bristol University Docking Engine) to screen a library of virtual compounds. From this work we identified the compound 7-(3-hydroxy-4-methoxy-phenyl)-3-(3-trifluoromethyl-phenyl)-6,7-dihydro-3H-imidazo[4,5-b]pyridin-5-ol (6) as a novel inhibitor scaffold. This compound inhibited several types of cancer cell proliferation at low micromolar concentrations with low toxicity. Compound 6 caused cell cycle arrest in the G2/M phase and blocked tubulin polymerization at low micromolar concentration (IC50 = 6.1 ±0.1 µM), inducing apoptosis via activation of caspase 9, increasing the level of the pro-apoptotic protein Bax and decreasing the level of the anti-apoptotic protein Bcl2. In summary, our approach identified a lead compound with potential antimitotic and antiproliferative activity.

5.
Proc Natl Acad Sci U S A ; 119(25): e2201980119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696571

RESUMO

Endosomal sorting maintains cellular homeostasis by recycling transmembrane proteins and associated proteins and lipids (termed "cargoes") from the endosomal network to multiple subcellular destinations, including retrograde traffic to the trans-Golgi network (TGN). Viral and bacterial pathogens subvert retrograde trafficking machinery to facilitate infectivity. Here, we develop a proteomic screen to identify retrograde cargo proteins of the endosomal SNX-BAR sorting complex promoting exit 1 (ESCPE-1). Using this methodology, we identify Neuropilin-1 (NRP1), a recently characterized host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as a cargo directly bound and trafficked by ESCPE-1. ESCPE-1 mediates retrograde trafficking of engineered nanoparticles functionalized with the NRP1-interacting peptide of the SARS-CoV-2 spike (S) protein. CRISPR-Cas9 deletion of ESCPE-1 subunits reduces SARS-CoV-2 infection levels in cell culture. ESCPE-1 sorting of NRP1 may therefore play a role in the intracellular membrane trafficking of NRP1-interacting viruses such as SARS-CoV-2.


Assuntos
COVID-19 , Endossomos , Interações Hospedeiro-Patógeno , Neuropilina-1 , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/virologia , Sistemas CRISPR-Cas , Endossomos/virologia , Deleção de Genes , Humanos , Nanopartículas , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proteômica , SARS-CoV-2/metabolismo , Nexinas de Classificação/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Front Mol Neurosci ; 15: 893739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721319

RESUMO

Bin-Amphiphysin-Rvs (BAR) domain proteins are critical regulators of membrane geometry. They induce and stabilize membrane curvature for processes, such as clathrin-coated pit formation and endosomal membrane tubulation. BAR domains form their characteristic crescent-shaped structure in the dimeric form, indicating that the formation of the dimer is critical to their function of inducing membrane curvature and suggesting that a dynamic monomer-dimer equilibrium regulated by cellular signaling would be a powerful mechanism for controlling BAR domain protein function. However, to the best of our knowledge, cellular mechanisms for regulating BAR domain dimerization remain unexplored. PICK1 is a Ca2+-binding BAR domain protein involved in the endocytosis and endosomal recycling of neuronal AMPA receptors and other transmembrane proteins. In this study, we demonstrated that PICK1 dimerization is regulated by a direct effect of Ca2+ ions via acidic regions in the BAR domain and at the N-terminus. While the cellular membrane tubulating activity of PICK1 is absent under basal conditions, Ca2+ influx causes the generation of membrane tubules that originate from the cell surface. Furthermore, in neurons, PICK1 dimerization increases transiently following NMDA receptor stimulation. We believe that this novel mechanism for regulating BAR domain dimerization and function represents a significant conceptual advance in our knowledge about the regulation of cellular membrane curvature.

7.
Nat Commun ; 13(1): 222, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017512

RESUMO

As the global burden of SARS-CoV-2 infections escalates, so does the evolution of viral variants with increased transmissibility and pathology. In addition to this entrenched diversity, RNA viruses can also display genetic diversity within single infected hosts with co-existing viral variants evolving differently in distinct cell types. The BriSΔ variant, originally identified as a viral subpopulation from SARS-CoV-2 isolate hCoV-19/England/02/2020, comprises in the spike an eight amino-acid deletion encompassing a furin recognition motif and S1/S2 cleavage site. We elucidate the structure, function and molecular dynamics of this spike providing mechanistic insight into how the deletion correlates to viral cell tropism, ACE2 receptor binding and infectivity of this SARS-CoV-2 variant. Our results reveal long-range allosteric communication between functional domains that differ in the wild-type and the deletion variant and support a view of SARS-CoV-2 probing multiple evolutionary trajectories in distinct cell types within the same infected host.


Assuntos
SARS-CoV-2/química , SARS-CoV-2/genética , Animais , COVID-19/virologia , Linhagem Celular , Microscopia Crioeletrônica , Evolução Molecular , Furina/metabolismo , Humanos , Ácido Linoleico/metabolismo , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo Viral , Internalização do Vírus
8.
Comput Struct Biotechnol J ; 20: 139-147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34934478

RESUMO

The SARS-CoV-2 spike protein is the first contact point between the SARS-CoV-2 virus and host cells and mediates membrane fusion. Recently, a fatty acid binding site was identified in the spike (Toelzer et al. Science 2020). The presence of linoleic acid at this site modulates binding of the spike to the human ACE2 receptor, stabilizing a locked conformation of the protein. Here, dynamical-nonequilibrium molecular dynamics simulations reveal that this fatty acid site is coupled to functionally relevant regions of the spike, some of them far from the fatty acid binding pocket. Removal of a ligand from the fatty acid binding site significantly affects the dynamics of distant, functionally important regions of the spike, including the receptor-binding motif, furin cleavage site and fusion-peptide-adjacent regions. Simulations of the D614G mutant show differences in behaviour between these clinical variants of the spike: the D614G mutant shows a significantly different conformational response for some structural motifs relevant for binding and fusion. The simulations identify structural networks through which changes at the fatty acid binding site are transmitted within the protein. These communication networks significantly involve positions that are prone to mutation, indicating that observed genetic variation in the spike may alter its response to linoleate binding and associated allosteric communication.

9.
Chem Sci ; 12(41): 13686-13703, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34760153

RESUMO

The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective 'peptibitors' inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.

11.
Chem Sci ; 12(13): 4753-4762, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-34163731

RESUMO

Protein-protein interactions (PPIs) are central to biological mechanisms, and can serve as compelling targets for drug discovery. Yet, the discovery of small molecule inhibitors of PPIs remains challenging given the large and typically shallow topography of the interacting protein surfaces. Here, we describe a general approach to the discovery of orthosteric PPI inhibitors that mimic specific secondary protein structures. Initially, hot residues at protein-protein interfaces are identified in silico or from experimental data, and incorporated into secondary structure-based queries. Virtual libraries of small molecules are then shape-matched against the queries, and promising ligands docked to target proteins. The approach is exemplified experimentally using two unrelated PPIs that are mediated by an α-helix (p53/hDM2) and a ß-strand (GKAP/SHANK1-PDZ). In each case, selective PPI inhibitors are discovered with low µM activity as determined by a combination of fluorescence anisotropy and 1H-15N HSQC experiments. In addition, hit expansion yields a series of PPI inhibitors with defined structure-activity relationships. It is envisaged that the generality of the approach will enable discovery of inhibitors of a wide range of unrelated secondary structure-mediated PPIs.

12.
Chem Sci ; 12(6): 2286-2293, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34163995

RESUMO

ß-Strand mediated protein-protein interactions (PPIs) represent underexploited targets for chemical probe development despite representing a significant proportion of known and therapeutically relevant PPI targets. ß-Strand mimicry is challenging given that both amino acid side-chains and backbone hydrogen-bonds are typically required for molecular recognition, yet these are oriented along perpendicular vectors. This paper describes an alternative approach, using GKAP/SHANK1 PDZ as a model and dynamic ligation screening to identify small-molecule replacements for tranches of peptide sequence. A peptide truncation of GKAP functionalized at the N- and C-termini with acylhydrazone groups was used as an anchor. Reversible acylhydrazone bond exchange with a library of aldehyde fragments in the presence of the protein as template and in situ screening using a fluorescence anisotropy (FA) assay identified peptide hybrid hits with comparable affinity to the GKAP peptide binding sequence. Identified hits were validated using FA, ITC, NMR and X-ray crystallography to confirm selective inhibition of the target PDZ-mediated PPI and mode of binding. These analyses together with molecular dynamics simulations demonstrated the ligands make transient interactions with an unoccupied basic patch through electrostatic interactions, establishing proof-of-concept that this unbiased approach to ligand discovery represents a powerful addition to the armory of tools that can be used to identify PPI modulators.

13.
Biophys J ; 120(6): 983-993, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33609494

RESUMO

Changeux et al. (Changeux et al. C. R. Biol. 343:33-39.) recently suggested that the SARS-CoV-2 spike protein may interact with nicotinic acetylcholine receptors (nAChRs) and that such interactions may be involved in pathology and infectivity. This hypothesis is based on the fact that the SARS-CoV-2 spike protein contains a sequence motif similar to known nAChR antagonists. Here, we use molecular simulations of validated atomically detailed structures of nAChRs and of the spike to investigate the possible binding of the Y674-R685 region of the spike to nAChRs. We examine the binding of the Y674-R685 loop to three nAChRs, namely the human α4ß2 and α7 subtypes and the muscle-like αßγδ receptor from Tetronarce californica. Our results predict that Y674-R685 has affinity for nAChRs. The region of the spike responsible for binding contains a PRRA motif, a four-residue insertion not found in other SARS-like coronaviruses. The conformational behavior of the bound Y674-R685 is highly dependent on the receptor subtype; it adopts extended conformations in the α4ß2 and α7 complexes but is more compact when bound to the muscle-like receptor. In the α4ß2 and αßγδ complexes, the interaction of Y674-R685 with the receptors forces the loop C region to adopt an open conformation, similar to other known nAChR antagonists. In contrast, in the α7 complex, Y674-R685 penetrates deeply into the binding pocket in which it forms interactions with the residues lining the aromatic box, namely with TrpB, TyrC1, and TyrC2. Estimates of binding energy suggest that Y674-R685 forms stable complexes with all three nAChR subtypes. Analyses of simulations of the glycosylated spike show that the Y674-R685 region is accessible for binding. We suggest a potential binding orientation of the spike protein with nAChRs, in which they are in a nonparallel arrangement to one another.


Assuntos
Receptores Nicotínicos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicosilação , Humanos , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Receptores Nicotínicos/química , Glicoproteína da Espícula de Coronavírus/química , Termodinâmica
14.
Small ; 17(10): e2100472, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33590708

RESUMO

The design and assembly of peptide-based materials has advanced considerably, leading to a variety of fibrous, sheet, and nanoparticle structures. A remaining challenge is to account for and control different possible supramolecular outcomes accessible to the same or similar peptide building blocks. Here a de novo peptide system is presented that forms nanoparticles or sheets depending on the strategic placement of a "disulfide pin" between two elements of secondary structure that drive self-assembly. Specifically, homodimerizing and homotrimerizing de novo coiled-coil α-helices are joined with a flexible linker to generate a series of linear peptides. The helices are pinned back-to-back, constraining them as hairpins by a disulfide bond placed either proximal or distal to the linker. Computational modeling indicates, and advanced microscopy shows, that the proximally pinned hairpins self-assemble into nanoparticles, whereas the distally pinned constructs form sheets. These peptides can be made synthetically or recombinantly to allow both chemical modifications and the introduction of whole protein cargoes as required.


Assuntos
Nanopartículas , Peptídeos , Fenômenos Biofísicos , Estrutura Secundária de Proteína , Proteínas
15.
Angew Chem Int Ed Engl ; 60(13): 7098-7110, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33469977

RESUMO

We investigate binding of linoleate and other potential ligands to the recently discovered fatty acid binding site in the SARS-CoV-2 spike protein, using docking and molecular dynamics simulations. Simulations suggest that linoleate and dexamethasone stabilize the locked spike conformation, thus reducing the opportunity for ACE2 interaction. In contrast, cholesterol may expose the receptor-binding domain by destabilizing the closed structure, preferentially binding to a different site in the hinge region of the open structure. We docked a library of FDA-approved drugs to the fatty acid site using an approach that reproduces the structure of the linoleate complex. Docking identifies steroids (including dexamethasone and vitamin D); retinoids (some known to be active in vitro, and vitamin A); and vitamin K as potential ligands that may stabilize the closed conformation. The SARS-CoV-2 spike fatty acid site may bind a diverse array of ligands, including dietary components, and therefore provides a promising target for therapeutics or prophylaxis.


Assuntos
Simulação de Dinâmica Molecular , Retinoides/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Esteroides/metabolismo , Vitaminas/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Quaternária de Proteína , Retinoides/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Esteroides/química , Vitaminas/química
16.
Br J Pharmacol ; 178(7): 1651-1668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33506493

RESUMO

BACKGROUND AND PURPOSE: The α7 and α4ß2* ("*" denotes possibly assembly with another subunit) nicotinic acetylcholine receptors (nAChRs) are the most abundant nAChRs in the mammalian brain. These receptors are the most targeted nAChRs in drug discovery programmes for brain disorders. However, the development of subtype-specific agonists remains challenging due to the high degree of sequence homology and conservation of function in nAChRs. We have developed C(10) variants of cytisine, a partial agonist of α4ß2 nAChR that has been used for smoking cessation. The C(10) methyl analogue used in this study displays negligible affinity for α7 nAChR, while retaining high affinity for α4ß2 nAChR. EXPERIMENTAL APPROACH: The structural underpinning of the selectivity of 10-methylcytisine for α7 and α4ß2 nAChRs was investigated using molecular dynamic simulations, mutagenesis and whole-cell and single-channel current recordings. KEY RESULTS: We identified a conserved arginine in the ß3 strand that exhibits a non-conserved function in nAChRs. In α4ß2 nAChR, the arginine forms a salt bridge with an aspartate residue in loop B that is necessary for receptor expression, whereas in α7 nAChR, this residue is not stabilised by electrostatic interactions, making its side chain highly mobile. This lack of constrain produces steric clashes with agonists and affects the dynamics of residues involved in agonist binding and the coupling network. CONCLUSION AND IMPLICATIONS: We conclude that the high mobility of the ß3-strand arginine in the α7 nAChR influences agonist binding and possibly gating network and desensitisation. The findings have implications for rational design of subtype-selective nAChR agents.


Assuntos
Agonistas Nicotínicos , Receptores Nicotínicos , Animais , Arginina , Encéfalo/metabolismo , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
17.
Haematologica ; 106(11): 2859-2873, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054117

RESUMO

Human ZNF648 is a novel poly C-terminal C2H2 zinc finger protein identified amongst the most dysregulated proteins in erythroid cells differentiated from iPSC. Its nuclear localisation and structure indicate it is likely a DNA-binding protein. Using a combination of ZNF648 overexpression in an iPSC line and primary adult erythroid cells, ZNF648 knockdown in primary adult erythroid cells and megakaryocytes, comparative proteomics and transcriptomics we show that ZNF648 is required for both erythroid and megakaryocyte differentiation. Orthologues of ZNF648 were detected across Mammals, Reptilia, Actinopterygii, in some Aves, Amphibia and Coelacanthiformes suggesting the gene originated in the common ancestor of Osteichthyes (Euteleostomi or bony fish). Conservation of the C-terminal zinc finger domain is higher, with some variation in zinc finger number but a core of at least six zinc fingers conserved across all groups, with the N-terminus recognisably similar within but not between major lineages. This suggests the N-terminus of ZNF648 evolves faster than the C-terminus, however this is not due to exon-shuffling as the entire coding region of ZNF648 is within a single exon. As for other such transcription factors, the N-terminus likely carries out regulatory functions, but showed no sequence similarity to any known domains. The greater functional constraint on the zinc finger domain suggests ZNF648 binds at least some similar regions of DNA in the different organisms. However, divergence of the N-terminal region may enable differential expression, allowing adaptation of function in the different organisms.


Assuntos
Eritrócitos/citologia , Megacariócitos/citologia , Fatores de Transcrição , Dedos de Zinco , Animais , Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Humanos
18.
Science ; 370(6518): 861-865, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33082294

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), uses the viral spike (S) protein for host cell attachment and entry. The host protease furin cleaves the full-length precursor S glycoprotein into two associated polypeptides: S1 and S2. Cleavage of S generates a polybasic Arg-Arg-Ala-Arg carboxyl-terminal sequence on S1, which conforms to a C-end rule (CendR) motif that binds to cell surface neuropilin-1 (NRP1) and NRP2 receptors. We used x-ray crystallography and biochemical approaches to show that the S1 CendR motif directly bound NRP1. Blocking this interaction by RNA interference or selective inhibitors reduced SARS-CoV-2 entry and infectivity in cell culture. NRP1 thus serves as a host factor for SARS-CoV-2 infection and may potentially provide a therapeutic target for COVID-19.


Assuntos
Betacoronavirus/fisiologia , Neuropilina-1/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Motivos de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , COVID-19 , Células CACO-2 , Infecções por Coronavirus/virologia , Cristalografia por Raios X , Furina/metabolismo , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Neuropilina-1/antagonistas & inibidores , Neuropilina-1/química , Neuropilina-1/genética , Pandemias , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
19.
Sci Rep ; 10(1): 15203, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938984

RESUMO

Alpha-helical integral membrane proteins contain conserved sequence motifs that are known to be important in helix packing. These motifs are a promising starting point for the construction of artificial proteins, but their potential has not yet been fully explored. Here, we study the impact of introducing a common natural helix packing motif to the transmembrane domain of a genetically-encoded and structurally dynamic de novo membrane protein. The resulting construct is an artificial four-helix bundle with lipophilic regions that are defined only by the amino acids L, G, S, A and W. This minimal proto-protein could be recombinantly expressed by diverse prokaryotic and eukaryotic hosts and was found to co-sediment with cellular membranes. The protein could be extracted and purified in surfactant micelles and was monodisperse and stable in vitro, with sufficient structural definition to support the rapid binding of a heme cofactor. The reduction in conformational diversity imposed by this design also enhances the nascent peroxidase activity of the protein-heme complex. Unexpectedly, strains of Escherichia coli expressing this artificial protein specifically accumulated zinc protoporphyrin IX, a rare cofactor that is not used by natural metalloenzymes. Our results demonstrate that simple sequence motifs can rigidify elementary membrane proteins, and that orthogonal artificial membrane proteins can influence the cofactor repertoire of a living cell. These findings have implications for rational protein design and synthetic biology.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutação , Motivos de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Modelos Moleculares , Engenharia de Proteínas , Estrutura Secundária de Proteína , Protoporfirinas/metabolismo
20.
Science ; 370(6517): 725-730, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958580

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a global crisis. Key to SARS-CoV-2 therapeutic development is unraveling the mechanisms that drive high infectivity, broad tissue tropism, and severe pathology. Our 2.85-angstrom cryo-electron microscopy structure of SARS-CoV-2 spike (S) glycoprotein reveals that the receptor binding domains tightly bind the essential free fatty acid linoleic acid (LA) in three composite binding pockets. A similar pocket also appears to be present in the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). LA binding stabilizes a locked S conformation, resulting in reduced angiotensin-converting enzyme 2 (ACE2) interaction in vitro. In human cells, LA supplementation synergizes with the COVID-19 drug remdesivir, suppressing SARS-CoV-2 replication. Our structure directly links LA and S, setting the stage for intervention strategies that target LA binding by SARS-CoV-2.


Assuntos
Ácido Linoleico/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus , Sítios de Ligação , Chlorocebus aethiops , Microscopia Crioeletrônica , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio , Modelos Moleculares , Peptidil Dipeptidase A/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...